Chem. Ber. 113, 1458 – 1471 (1980)

# Polare und unpolare Cycloadditionen von 1,3-Butadien und Cyclopentadien an Anthracene

Gerd Kaupp\* und Heinz-Willi Grüter

Chemisches Laboratorium der Universität Freiburg, Albertstr. 21, D-7800 Freiburg

Eingegangen am 18. Juli 1979

Die Photoadditionen von Anthracen (1a) und 9-Anthracencarbonitril (1b) mit 1,3-Butadien (2) führen zu deutlich verschiedenen Verhältnissen an [4 + 2]- und [4 + 4]-Addukten. Dies und die – im Gegensatz zu 1a – völlige Unterdrückung der Photo-Diels-Alder-Addition zwischen 1b,c,d und Cyclopentadien (9) bei 0°C ist als Hybridisierungseffekt beim vielfach bewährten Diradikalmechanismus zu verstehen. Bei höheren Temperaturen gehen die [4 + 4]-Addukte 11 durch suprafaciale 1,3-Verschiebung in Diels-Alder-Addukte 12, durch [4 + 4]-Cycloreversion in 1 und 9, oder mit zugesetzten 1,3-Dienen (bzw. *in situ* gebildetem 1 und 9) in wohldefinierte polycyclische Addukte über. Spektroskopische und Löschdaten werden diskutiert.

#### Polar and Non-polar Cycloadditions of 1,3-Butadiene and Cyclopentadiene to Anthracenes

The photoadditions of anthracene (1a) and 9-anthracenecarbonitrile (1b) with 1,3-butadiene (2) lead to very different ratios of [4 + 2]- and [4 + 4]-adducts. This and, in contrast to the behavior of 1a, the complete suppression of photo-Diels-Alder additions between 1b,c,d and cyclopentadiene (9) at 0 °C are readily rationalized as an effect of hybridization in terms of the well established and successful diradical mechanism. At higher temperatures the [4 + 4]-adducts 11 undergo suprafacial 1,3-shifts into Diels-Alder adducts 12 and [4 + 4]-cycloreversions into 1 and 9. At such temperatures, added 1,3-dienes (or 1 and 9 generated *in situ*) combine with 11 to give well defined polycyclic adducts. Spectroscopic and quenching data are discussed.

1,3-Diene addieren sich photochemisch teils im Sinne der [4 + 2]- (Diels-Alder-), teils im Sinne der [4 + 4]-Reaktion an die 9,10-Stellungen von Anthracen<sup>1)</sup>. Orbitaltheoretische Überlegungen führten trotz zahlreicher widersprechender experimenteller Daten<sup>1,2)</sup> zur Spekulation (sog. "Vorhersage"), daß polare Substituenten in der 9-Stellung von Anthracen wegen Orbitalniveau-Umkehr photochemische Diels-Alder-Additionen auf Kosten der [4 + 4]-Additionen fördern sollten<sup>3)</sup>. Dieses Postulat ist nach dem Diradikalmechanismus cyclovinyloger Mehrzentrenreak-tionen<sup>1,2,4)</sup> überraschend. Vielmehr verlangen Molekülmodellbetrachtungen der experimentell in Modellreaktionen nachgewiesenen<sup>1,2)</sup> und daher bei verwandten Beispielen extrapolativ zu erschließenden Diradikalzwischenprodukte häufig genau das Gegenteil<sup>5)</sup>. Zur Klärung der Frage, ob sich eine Stabilisierung der planaren sp<sup>2</sup>-Geometrien an den Radikalzentren von Diradikalen auf deren Reaktionsweise auswirkt und präparativ nutzen läßt, erweiterten wir unsere Untersuchungen<sup>1)</sup> auf einige in 9-Stellung substituierte Anthracene und berichten zusammenfassend über Synthese, Eigenschaften, thermische suprafaciale 1,3-Verschiebungen und gezielte Folgeadditionen der nach dem Diradikalmechanismus erwarteten Produkte.

© Verlag Chemie, GmbH, D-6940 Weinheim, 1980 0009 – 2940/80/0404 – 1458 \$ 02.50/0

#### 1459

## **Butadien-Addukte**

Während elektronisch angeregtes Anthracen (1a\*) von 1,3-Butadien (2) (6 M in Benzol; Bildung von 69% 5a) zum Diels-Alder-Produkt 4a (17%) aber fast nicht zum [4 + 4]-Addukt **6a** (0.7%) und nicht nachweisbar zu **7a**  $\rightarrow$  **8a** abgefangen wird<sup>1</sup>), erhält man aus 9-Anthracencarbonitril (1b) und 2 (3.2 M in Benzol) überwiegend [4 + 4]-Cycloaddukte. Es entstehen 7b  $\rightarrow$  8b (14%) und 6b (3.5%) neben 4b (1%) sowie 5b<sup>6</sup> (80%). Die Ausbeuten lassen vermuten, daß 1b wirkungsvoller (elektrostatisch günstig) zu 3b abgefangen wird als 1a zu 3a, denn man erhält schon bei etwa halbierter Konzentration von 2 vergleichbare Adduktausbeuten. 3a und das durch die Nitrilgruppe stabilisierte 3b sollten sich bei den verschiedenen Stabilisierungsreaktionen unterschiedlich verhalten. Während sich der Einfluß zusätzlicher Delokalisierung, d. h. verstärkter Fixierung einer planaren sp<sup>2</sup>-Geometrie am benzhydrylischen Radikalzentrum, auf die Spaltungsreaktion (zu 1 und 2) noch nicht begründen läßt<sup>7</sup>), müssen Verschiebungen in den Verhältnissen von [4 + 2]- und [4 + 4]-Reaktionen erwartet werden: Bevor die Sechsringbildung eintreten kann, muß eine beträchtliche Umhybridisierung am benzhydrylischen Radikalzentrum von 3 zur pyramidalen Geometrie stattfinden. Molekülmodelle zeigen, daß die für den Ringschluß zu 4 ungünstige Elektronenüberlappung auf diese Weise entscheidend verbessert wird. Die Nitrilgruppe wirkt damit der [4 + 2]-Addition entgegen. Für die [4 + 4]-Additionen bestehen demgegenüber in 3 von vornherein günstige Elektronenüberlappungen in den richtigen Rotameren. Allerdings erscheint die Bildung des hochgespannten 7 ( $\rightarrow$  8) konformativ so ungünstig, daß die Reaktion erst bei starker Behinderung der Diels-Alder-Reaktion (X = CN) zum Zug kommt. Die zumindest denkbare Achtringbildung von 3 zu 6 erfordert eine wenig günstige interne Rotation im Allylsystem. Angesichts verhältnismäßig kleiner Quantenausbeuten (hohe Ausbeuten an 5a, b) und bisher fehlender Möglichkeiten, den Anteil an Spaltungsreaktion  $(3 \rightarrow 1 + 2)$  direkt zu messen, kann nicht entschieden werden, ob 6



1980

statt dessen über rotamere Diradikale 3 aus  $1^*$  und in geringer Menge vorhandenem s-*cis*-2 gebildet wird. Trotz dieser Ungewißheiten ist der erwartete Trend auf die Ausbeuteverschiebungen klar und eindeutig. Insbesondere scheint es hier keine weiteren Komplikationen oder Verfälschungen durch sterische Effekte zu geben.

Die Konstitutionen der Verbindungen 4b, 6b und 8b sind analytisch und spektroskopisch (insbesondere <sup>1</sup>H-NMR-spektroskopisch) gesichert. 4b enthält 3 Olefin-H und sein H<sup>10</sup> koppelt mit 2 vicinalen Protonen. 6b zeigt wie 6a<sup>1)</sup> bei 30°C schnelle Ringinversion und besitzt 2 Olefin-H. In 8b sind die Acht- und Cyclohexen-Ringe *trans*verknüpft: Das Ringsystem liegt in symmetrischer Konformation vor  $(J_{H2\psi iaq/H3} = J_{H9\psi iaq/H3} = 3 \text{ Hz}, \Phi \text{ ca. } 75°)$  und  $J_{H^{10}/H^9\psi iaq} = 6.8 \text{ Hz} (\Phi \text{ ca. } 40°)$  sowie  $J_{H^{10}/H^9\psi ax} = 1.5$ Hz ( $\Phi \text{ ca. } 80°$ ) haben die erwarteten Werte (bei *cis*-Verknüpfung würden die betreffenden Interplanarwinkel in der symmetrischen Konformation ca. 0° und 120° betragen).

# Cyclopentadien-Addukte

Der Einfluß polarer Substituenten auf die photochemische [4 + 2]/[4 + 4]-Selektivität läßt sich auch zur Steuerung von Photoadditionen an cyclische 1,3-Diene wie Cyclopentadien (9) nutzen. Mit 1a entstehen unter Fluoreszenzlöschung das [4 + 4]-Addukt 11a und das [4 + 2]-Addukt 12a in vergleichbaren Ausbeuten<sup>1,2b,8</sup> (siehe Tab. 1), so wie das entsprechend mit 1,3-Cyclohexadien gefunden wurde (54% [4 + 4]- und 19% [4 + 2]-Addukt)<sup>1,2c,5</sup>. Vor dem Sechsringschluß zu 12a muß im Diradikal 10a eine beträchtliche Umhybridisierung (sp<sup>2</sup>  $\rightarrow$  sp<sup>3</sup>) am Benzhydrylzentrum eintreten, um die sonst sterisch stark behinderte (*peri*-H/Methylen-H) Bildung des erforderlichen Rotameren 10a' zuzulassen und die Elektronenüberlappung zu verbessern (in 10' wäre das



Rotamere für die [4 + 4]-Reaktion sterisch benachteiligt). Demgegenüber ist das für die Achtringbildung erforderliche Rotamere **10a** laut Modell auch möglich, solange das Benzhydrylzentrum die planare sp<sup>2</sup>-Geometrie einnimmt, und dank beginnender Überlappung der Elektronen kann die Bindungsbildung einsetzen. Daher wird durch Erschwerung der Umhybridisierung mit polaren Substituenten (z. B. zusätzliche Delokali-

sierung in CN- und Cl-Substituenten) die [4 + 4]-Selektivität erhöht. Dies bestätigen die Daten der Tab. 1: Aus **10b,c,d** werden die Verbindungen **11**, aber nicht **12** erhalten (Nachweisgrenze < 0.1%).

| 1 | % Fluoreszenz-         | % Ausbeute an |     |    |             |
|---|------------------------|---------------|-----|----|-------------|
| 1 | löschung <sup>a)</sup> | 11            | 12  | 5  | <b>1</b> b) |
| a | 32°)                   | 44            | 31  | 25 | _           |
| b | 91.5 <sup>d)</sup>     | 79            | 0.0 | 0. | _           |
| с | 17.5 <sup>d)</sup>     | 40            | 0.0 | 39 | 4           |
| đ | 20 <sup>c)</sup>       | 14            | 0.0 | 0. | 80          |

Tab. 1. Photoreaktionen von Anthracenen 1 in Cyclopentadien (9) bei  $0 \pm 5$  °C

<sup>a)</sup> 5 M 9, 20 °C; in keinem Fall läßt sich Exciplexlumineszenz beobachten.  $-^{b)}$  Rückbildung bei der Aufarbeitung.  $-^{c)}$  In Cyclohexan.  $-^{d)}$  In Benzol.

Die Hybridisierungseffekte bei den Reaktionen von Diradikalen sind erwartungsgemäß sehr wirkungsvoll. Die polaren Substituenten beeinflussen aber auch die Diradikalbildung. So beschleunigt die Nitrilgruppe dank elektrostatischer Wirkung die photochemische Primärreaktion mit 9, wie sich an der starken Fluoreszenzlöschung und der fehlenden Bildung von 5b ablesen läßt. Beim Chlorsubstituenten wirken den elektrostatischen Effekten sterische entgegen. Dadurch werden die Abfangreaktionen von 9 bei geringerer Fluoreszenzlöschung teilweise (bei 1d überwiegend) in den Endring geleitet (vgl. auch Lit.<sup>1)</sup>). Dies gibt sich durch Rückbildung von 1c und 1d bei der Aufarbeitung (maximal 40°C) sowie durch Isolierung des überlebenden 13 zu erkennen. Für die instabilen Addukte am Endring kommen verschiedene Konstitutionen in Frage.



Die Konstitutionen der neuen Verbindungen **11b,c,d** und **13** sind analytisch und spektroskopisch gesichert (siehe exp. Teil). Besonders aufschlußreich sind die Kopplungskonstanten der Brückenkopf-H in **11**, die mit denen des Grundsystems **11a**<sup>1,8)</sup> oder der – über suprafaciale 1,3-Verschiebungen zugänglichen – Diels-Alder-Addukte **12** (siehe unten) verglichen werden können und die im Einklang mit wohldefinierten Interplanarwinkeln stehen. Zusätzliche Hinweise ergeben sich durch Vergleich mit den Daten der Hydrierungsprodukte **14**.

## Thermolyse der Cyclopentadien-Addukte

Die photochemisch erzeugten Diradikalzwischenprodukte 10b,c,d sind bei  $0 \pm 5$  °C nicht zur Bildung von Diels-Alder-Addukten bereit. Nach den Erfahrungen mit thermisch und photochemisch erzeugtem 10a<sup>1,2c,8,9</sup> kann aber erwartet werden, daß sich

die Umhybridisierung und partielle interne Rotation von 10 nach 10' auch in Gegenwart polarer Substituenten thermisch aktivieren läßt. Dies sollte bei höheren Temperaturen suprafaciale 1,3-Verschiebungen von 11 nach 12 ermöglichen, wenn die Verbindungen 12 (wie beim Grundsystem 12a) langsamer zerfallen. In Konkurrenz dazu ist mit Spaltungen von 10 oder 10' bzw. deren gestreckten Rotameren (ausgehend von 11 thermische [4 + 4]-Cycloreversion) zu rechnen.



Die Daten der Tab. 2 bestätigen diese Erwartungen. Man erhält bei den genau eingehaltenen Bedingungen über 10 und 10' signifikante Ausbeuten der Diels-Alder-Addukte 12 neben 1.

| 11 | Temperatur | Zeit<br>(h) | % Ausbeute an      |                    |
|----|------------|-------------|--------------------|--------------------|
| 11 | (°C)       |             | 12                 | 1                  |
| a  | 186        | -           | 19.4 <sup>a)</sup> | 80.6 <sup>a)</sup> |
| b  | 130        | 22          | 17                 | 78                 |
| c  | 172        | 10          | 36                 | 19                 |
| d  | 152        | 35          | 19                 | 35                 |

Tab. 2. Thermolyse von 11 in Benzol

a) Verhältnis der Geschwindigkeitskonstanten in n-Dodecan<sup>9</sup>).

Die Konstitutionen der durch suprafaciale 1,3-Verschiebung erhaltenen Diels-Alder-Addukte 12 ergeben sich eindeutig aus den <sup>1</sup>H-NMR-Spektren. Man erkennt, daß sich der Substituent X und die Allylgruppierung des Fünfrings an derselben C – C-Bindung befinden. Dies erfüllt die naheliegende Erwartung, daß – wie gezeichnet – immer zuerst die schwächere Bindung von 11 gebrochen wird.

Die isolierten [4 + 2]-Produkte 12 zeigen um 8.5 nm kürzerwellige und weniger scharf strukturierte UV-Spektren (siehe exp. Teil) als 11. Interessanterweise absorbieren die Hydrierungsprodukte 14 bei dazwischenliegenden Wellenlängen. Dies zeigt, daß nicht nur die Konformation des Cyclohexadienrings (bei 12 stärker ausgeprägte Wanne als bei 11), die den Winkel zwischen den Ebenen der miteinander wechselwirkenden Benzolringe beeinflußt, ausschlaggebend ist. Die UV-Absorptionen von 11 werden auch durch die stark auf einen der Benzolringe einwirkende Fünfringdoppelbindung langwellig verschoben.

Die Umlagerungs- und Spaltungsreaktionen von 11 müssen zur Zurückdrängung von Folgeadditionen zwischen Addukten und Spaltprodukten (vgl. den folgenden Abschnitt) in verdünnten Lösungen durchgeführt werden. Mit den Chlorderivaten 11c,d/12c,d lassen sich aber auch unter diesen Bedingungen weitere (noch nicht aufgeklärte) Nebenreaktionen nicht vermeiden.

### Cycloadditionen der Cyclopentadien-Addukte

Die Cycloadditionsprodukte der Typen 11 und 12 von Cyclopentadien (9) sollten prinzipiell zu weiteren Cycloadditionen, z. B. mit Anthracen (1a) befähigt sein, denn nach Tab. 2 sind sie z. T. so stabil, daß sie die hohen Reaktionstemperaturen aushalten können, wie sie für die Vereinigung von Cyclopenten (15) mit Anthracen (1a) zu 16 nötig sind (172 °C, 30 h, siehe exp. Teil).



Damit ergeben sich durch Kombination photochemischer und thermischer Cycloadditionen neuartige Möglichkeiten der 1,4-Überbrückung und Anellierung sowie doppelter Anellierung von Fünfringen, ausgehend von Cyclopentadien [Gl. (1)].



Erwartungsgemäß lassen sich nicht nur Anthracen (1a), sondern auch substituierte Anthracene (z. B. 1c) für derartige Reaktionen einsetzen. Beispiele sind die Synthesen von 17a,c, 18 und 19. Diese Polycyclen werden bei 172 °C mit guten Ausbeuten erhalten. Ihre Konstitution wird von <sup>13</sup>C-NMR-, UV-Spektren und Analysendaten, ihr stereochemischer Bau von <sup>1</sup>H-NMR-Spektren (Symmetrieeigenschaften, Kopplungskonstanten, Signale bei negativen  $\delta$ -Werten) belegt (siehe exp. Teil).

Das [4 + 4]-Addukt **11a** addiert schneller Anthracen (**1a**) als das [4 + 2]-Addukt **12a**. Dies ergibt sich aus Konkurrenzversuchen mit Anthracenunterschuß bei 172 °C. Nach vollständiger Umwandlung von **11a** (z. T. Bildung von **1a** und **9**) werden unverbrauchtes **12a** (69%) sowie **17a**, **19** und **1a** (Verhältnis 2.7:1:0.94) isoliert. Die zusätzliche Gewinnung des schwerlöslichen Produkts **21** bei demselben Experiment belegt die Erweiterungsfähigkeit des Syntheseschemas [Gl. (1)]. Offenbar addiert sich aus **11a** *in situ* gebildetes **9** an unverändertes **11a** zu **20** und dieses addiert dann **1a** zum stabilen

Endprodukt 21, dessen Konstitution sich (im Einklang mit Molekülmodellen) aus der Symmetrie und den Kopplungskonstanten des <sup>1</sup>H-NMR-Spektrums ergibt (siehe exp. Teil). Die Reaktivitätsunterschiede zwischen 11 und 12 dürften die erhöhte Spannung der Doppelbindung im überbrückten Fünfring widerspiegeln.



#### Anmerkungen

Die Photoadditionen von 1 an 1,3-Butadien (2) und Cyclopentadien (9) sind weitere Beispiele präparativ wertvoller cyclovinyloger Mehrzentrenreaktionen<sup>2b,2c</sup>). Die Begünstigung des [4 + 4]-Typs durch polare Substituenten ist nach dem beim Grundsystem 1a/9 experimentell belegten<sup>2b,8,9</sup>) und extrapolativ bewährten<sup>1,2c,10</sup>) Diradikalmechanismus<sup>4</sup>) verständlich, während Orbitalsymmetriehypothesen nach EHT-Verfahren mit Ergänzung durch PMO- oder CI-Techniken "vorhersagen" mußten, daß polare Substituenten im Gegenteil den [4 + 2]-Typ fördern sollen<sup>3</sup>) und sich – zumindest teilweise infolge unvollständiger Aufklärung von Produktzusammensetzungen<sup>11</sup>) – sogar vorübergehend bestätigt glaubten<sup>3</sup>). Selbstverständlich lassen sich die Produktverhältnisse in der Regel nicht nur mit Hybridisierungseffekten und deren Einfluß auf Elektronenüberlappungen und Rotamerenbildungen, sondern auch mit zahlreichen weiteren Effekten beeinflussen. Dies mindert den Wert pauschaler "Vorhersagen" mittels Orbitalsymmetriehypothesen ohne empirische Grundlage entscheidend und erfordert statt dessen detaillierte Analysen auf der Grundlage experimentell gesicherter Mechanismen. So sind bei substituierten 1,3-Butadienen bisweilen elektrostatische Kräfte im Diradikal (z. B. Muconsäureester und Sorbinsäureester mit  $1a^{1}$ ) oder 1,3-Diphenylisobenzofuran<sup>10</sup>) oder sterische Effekte (z. B. 2,5-Dimethyl-2,4-hexadien<sup>11</sup>) produktbestimmend. Auch muß damit gerechnet werden, daß wenig stabile Primärprodukte (etwa vom Typ 7) durch polare Substituenten noch instabiler werden (z. B. 7b). Falls sperrige 1,3-Diene eingesetzt werden, kann dann sogar die Möglichkeit stabilisierender Abfangreaktionen (analog 7b  $\rightarrow$  8b) entfallen.

Bei cyclischen 1,3-Dienen kommt man ausgehend von genau vermessenen Modellreaktionen mit Hilfe von Molekülmodellen für die extrapolativ zu erschließenden Diradikalzwischenprodukte zu genau spezifizierbaren Erwartungen. Diese stehen im Einklang mit den experimentellen Ergebnissen<sup>12)</sup>. Damit eröffnet sich auch die wichtige Möglichkeit, irrtümliche Literaturangaben zu erkennen und nach Überprüfung zu berichtigen, selbst wenn diese über viele Jahre als "Beweise" für Orbitalsymmetriekonzepte angesehen wurden (siehe z. B. Lit.<sup>11)</sup>).

Der Einsatz photochemischer Techniken ist hier nicht nur zur kinetisch gelenkten Synthese  $(6, 7 \rightarrow 8, 11^{13})$ , sondern auch zur Vermeidung oder Zurückdrängung von Folgereaktionen (Umlagerungen, Folgeadditionen, Polymerisation) erforderlich. Die gezielte Kombination photochemischer und thermischer Cycloadditionen führt zur ergiebigen Realisierung der in Gl. (1) angegebenen Überbrückungen und Anellierungen von Cyclopentadien. Diese Reaktionen sind zweifellos erweiterungsfähig, wie schon das Beispiel der Synthese von 21 zeigt.

Weitere Untersuchungen sind notwenig, um die temperaturabhängigen Reaktionsweisen von 1,4-Diradikalen (z. B. die Umlagerungen  $11 \neq 10 \neq 10' \neq 12$ ) besser verstehen und wie bei der Synthese von 12b,c,d nutzen zu können. So kann auch angesichts der Daten von Tab. 2 bisher über die Gründe für die Spaltungsreaktionen nur spekuliert werden. Qualitative Versuche zeigen, daß photochemische [4 + 4]-Cycloreversionen von 6b,11b,c,d wie bei den unsubstituierten Verbindungen 6a und  $11a^{1,2b}$  schon bei  $-190^{\circ}$ C gelingen, den Spaltungen von 10 also kaum energetische Barrieren gegenüberstehen. Dies löst aber nicht die Frage nach der Wahrscheinlichkeit der Spaltungsreaktion in den verschiedenen Hybridisierungs- und Rotationszuständen der Diradikale im Vergleich zu den konkurrierenden Cyclisierungen. Man kann vermuten, daß gestreckte 1,4-Diradikale (rotamer zu 3 bzw. 10) nur die Spaltungsreaktionen eingehen, wenn sie im Verlauf von Cycloadditionen oder Cycloreversionen entstehen, weil Rotationsbarrieren die Bildung der *endo*-Konformationen 3 bzw. 10 behindern. Für weitergehende Schlüsse sollten die Spektren der Diradikale gemessen werden, auch wenn das nach den bisherigen Erfahrungen<sup>4</sup>) vermutlich erst deutlich unterhalb 77 K gelingen wird<sup>7</sup>).

Der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie danken wir sehr für großzügige Sachbeihilfen, Professor H. Prinzbach (Freiburg) für Meßgelegenheiten an NMR-Spektrometern und Hochdruck-Flüssigchromatographen.

## Experimenteller Teil

Schmelzpunkte: Gerät nach Tottoli (Fa. Büchi). – UV-Spektren: Spektralphotometer Spectronic 600 mit konstanter Bandbreite von 0.5 nm, 1-mm- oder 1-cm-Quarzküvetten bei 25 °C, Recorder W + W-3002 (sh = Schulter; weiteres s. Lit.<sup>1)</sup>). Es werden nur die längstwelligen Übergänge angegeben. – <sup>1</sup>H-NMR-Spektren: Varian EM 390 und Bruker WM 250. Die Zuordnungen sind, falls erforderlich, durch Entkopplungsexperimente gesichert. – <sup>13</sup>C-NMR-Spektren: Bruker WM 250; 62.83 MHz. Alle  $\delta$ -Werte sind auf Tetramethylsilan als internen Standard bezogen. – Molekülmodelle: Framework Molecular Models, Prentice-Hall, Inc., Englewood Cliffs, N. J., USA. – IR-Spektren: Perkin-Elmer Gerät 157 (NaCl-Spektrophotometer). Es werden nur die Wellenzahlen von Nitril-Valenzschwingungen angegeben. – Fluoreszenz, Fluoreszenzlöschung und Exciplexlumineszenz: s. Lit.<sup>1)</sup>. – Präparative Hochdruckflüssigchromatographie (präp. hplc): Perkin-Elmer Gerät Serie 2/2 mit UV-Detektor (variable Wellenlänge, Modell LC-55B/S); Fertigsäule (Fa. Knauer) 25 cm Länge, 16 mm Durchmesser aus 7 µm-LiChrosorb RP-18 (reversed-phase); Flußgeschwindigkeit 10–15 ml/min. – Präparative Schichtchromatographie (präp. DC): Das Gemisch wird auf Platten von 75 × 25 cm<sup>2</sup> mit 300 g Kieselgel (Macherey, Nagel & Co., P/UV<sub>254</sub>) aufgetrennt. Die betreffenden Zonen werden mit Essigester bei Raumtemp. extrahiert.

Katalytische Hydrierungen: Die bei Raumtemp, wirkungsvoll magnetisch gerührten Lösungen werden an einer Gasbürette bei Normaldruck bis zur berechneten Wasserstoffaufnahme hydriert.

*Präparative Belichtungen:* In der Regel werden mit N<sub>2</sub> gespülte oder bei 77 K in Bombenrohren entgaste Lösungen bei  $0 \pm 5$  °C bzw. 40 °C in Tauchapparaturen bzw. luftgekühlten Rayonet-Reaktoren dem gefilterten Licht von Quecksilberhochdruckbrennern (wassergekühlte Hanau Q-81, Wertheimer UVW-55-Filterglas,  $\lambda \approx 310-410$  nm) bzw. Quecksilberniederdruck-Leuchtstofflampen (350 nm) ausgesetzt.

Die *Mikroanalysen* und *Molmassen* bestimmte die analytische Abteilung des Chemischen Laboratoriums der Universität Freiburg.

Photoaddition von 9-Anthracencarbonitril (1b) an 1,3-Butadien (2): 3,8-trans-11,12: 13,14-Dibenzotricyclo[8.2.2. $0^{3,8}$ ]tetradeca-5,11,13-trien-1-carbonitril (8b), 7,8:9,10-Dibenzobicyclo-[4.2.2]deca-3,7,9-trien-1-carbonitril (6b), 12-Vinyl-9,10-dihydro-9,10-ethano-9-anthracencarbonitril (4b): 3.05 g (15 mmol) 1b werden mit 170 ml Benzol und 34.0 g (0.64 mol) 2 in einem starkwandigen Pyrexrohr (Füllhöhe 68 cm) entgast und unter Vakuum abgeschmolzen. Man belichtet 30 h mit acht 350-nm-Fluoreszenzlampen im luftgekühlten Rayonet-Reaktor. Nach dem Abdestillieren von unverbrauchtem 2 sowie Benzol wird der Rückstand mit 50 ml Benzol aufgekocht und dimeres 9-Anthracencarbonitril (5b) abfiltriert (2.3 g, 75%). Das Filtrat enthält laut <sup>1</sup>H-NMR-Analyse **8b**, **6b** und **4b** im Verhältnis 10: 2.4: 0.75. Durch präp. DC (300 g SiO<sub>2</sub>, Benzol) werden Oligomere, Mischpolymere und weitere 150 mg (5%) **5b** von 530 mg **8b** mit 40 mg (1%) **4b** sowie einer Mischfraktion aus 120 mg **8b** (insgesamt 14%) und 130 mg (3.5%) **6b** abgetrennt.

8b wird durch Kristallisation aus Methanol rein erhalten (400 mg); Schmp. 135 °C.

IR (KBr): 2235 cm<sup>-1</sup> (C=N). – UV (CH<sub>3</sub>CN):  $\lambda_{max}$  ( $\varepsilon$ ) = 251 (sh, 360), 257 (540), 263 (750), 266 (sh, 520), 270 nm (740). – <sup>1</sup>H-NMR (250 MHz, CDCl<sub>3</sub>):  $\delta$  = 7.90 – 7.85 (1 Aromaten-H, m); 7.75 – 7.70 (1 Aromaten-H, m); 7.45 – 7.22 (5 Aromaten-H, m); 7.26 – 7.20 (1 Aromaten-H, m); 5.82 – 5.70 (H<sup>5,6</sup>, m); 4.26 (H<sup>10</sup>, dd, J = 6.8; 1.5 Hz); 2.27 (H<sup>2ψaq</sup>, dAB, J = 13; 3 Hz); 2.12 (H<sup>2ψax</sup>, dAB, J = 13; 11 Hz); 1.99 (H<sup>9ψāq</sup>, ddAB, J = 13; 6.8; 3 Hz); 1.85 – 1.65 (3 H, m); 1.55 – 1.39 (2H, m); 0.91 – 0.71 (H<sup>3,8</sup>, m). – <sup>13</sup>C-NMR (CDCl<sub>3</sub>):  $\delta$  = 140.8, 138.3, 136.2, 133.9, 129.0, 128.5, 128.3, 128.3, 127.6, 127.3, 126.8, 126.1, 125.3, 123.2, 54.1, 47.9, 47.7, 45.2, 35.7, 34.6, 30.8, 30.7.

C23H21N (311.4) Ber. C 88.70 H 6.80 N 4.50 Gef. C 88.69 H 6.69 N 4.39

Aus der Mutterlauge der Kristallisation von **8b** wird **4b** nach präp. hplc (85% Methanol/Wasser) isoliert. Ausb. 30 mg, Schmp. 89°C (aus Methanol).

IR (KBr): 2250 cm<sup>-1</sup> (C = N). – UV (CH<sub>3</sub>CN):  $\lambda_{max}$  ( $\varepsilon$ ) = 250 (sh, 420), 257 (610), 263 (840), 270 nm (950). – <sup>1</sup>H-NMR (90 MHz, CDCl<sub>3</sub>):  $\delta$  = 7.7 – 7.4 (2 Aromaten-H, m); 7.3 – 7.0 (6 Aromaten-H, m); 5.45 – 4.65 (3 H, m); 4.22 (H<sup>10</sup>, t, J = 2.7 Hz); 2.85 – 2.55 (H<sup>12</sup>, m); 2.10 (H<sup>11</sup>, ddAB, J = 12.4; 9.8; 2.7 Hz); 1.47 (H<sup>11'</sup>, ddBA, J = 12.4; 4.8; 2.7 Hz).

C<sub>19</sub>H<sub>15</sub>N (257.3) Ber. C 88.68 H 5.88 N 5.44 Gef. C 88.66 H 5.77 N 5.35

Weitere in noch geringerer Ausb. (< 0.2%) vorhandene Produkte wurden nicht genauer untersucht. Zur Isolierung von **6b** wird die Mischfraktion aus **8b** und **6b** mittels präp. DC (300 g SiO<sub>2</sub>), Cyclohexan/Benzol (4:1), 10 Entwicklungen) getrennt. **6b** kristallisiert aus Methanol, Schmp. 136°C (beginnende Zers.).

IR (KBr): 2235 cm<sup>-1</sup> (C=N). – UV (CH<sub>3</sub>CN):  $\lambda_{max}$  ( $\epsilon$ ) = 250 (sh, 300), 255.5 (430), 261 (610), 265 (sh, 410), 268.5 nm (600). – <sup>1</sup>H-NMR (90 MHz, CCl<sub>4</sub>):  $\delta$  = 7.9 – 7.65 (2 Aromaten-H, m); 7.45 – 7.15 (6 Aromaten-H, m); 5.15 – 4.7 (H<sup>3,4</sup>, m); 4.14 (H<sup>6</sup>, t, *J* = 4.3 Hz, Mittelung wegen Ringinversion); 3.2 – 3.05 (2 H, m); 2.9 – 2.75 (2 H, m).

C19H15N (257.3) Ber. C 88.68 H 5.88 N 5.44 Gef. C 88.84 H 5.61 N 5.12

7,8: 9,10-Dibenzotricyclo[4.2.2.1<sup>2,5</sup>]undeca-3,7,9-trien-1-carbonitril (11b): 509 mg (2.5 mmol) 9-Anthracencarbonitril (1b) werden unter Durchleiten von Stickstoff in 130 ml Cyclopentadien (9) bei 0 °C durch ein UVW-55-Filter mit einem Q-81-Brenner bis zum Verschwinden der UV-Absorption von 1b (1 – 2 h) belichtet. Anschließend fügt man noch 5 mal je 509 mg 1b (insgesamt 15 mmol) zu und belichtet entsprechend. Unverbrauchtes 9 wird i. Vak. in eine auf 77 K gekühlte Vorlage kondensiert, der Rückstand nach Abdestillation von flüchtigem Material bei 40 °C/  $5 \cdot 10^{-4}$  Torr durch präp. DC (600 g SiO<sub>2</sub>, Benzol) aufgetrennt. Man erhält keine Hinweise auf 12b (< 0.1%, hplc-Analyse) und isoliert 3.2 g (79%) 11b, Schmp. 144 – 146 °C (Zers., aus Ethanol).

IR (KBr): 2250 cm<sup>-1</sup> (C=N). – UV (CH<sub>3</sub>CN):  $\lambda_{max}$  ( $\varepsilon$ ) = 263 (750), 271 (1140), 279 nm (1780). – <sup>1</sup>H-NMR (250 MHz, CDCl<sub>3</sub>):  $\delta$  = 7.65 – 7.60 (1 Aromaten-H, m); 7.55 – 7.50 (1 Aromaten-H, m); 7.23 – 7.15 (3 Aromaten-H, m); 7.15 – 7.07 (3 Aromaten-H, m); 5.71 (H<sup>3</sup>, br. dAB, J = 5; 3 Hz); 5.65 (H<sup>4</sup>, br. dBA, J = 5; 3 Hz); 4.06 (H<sup>6</sup>, d, J = 9 Hz); 3.19 – 3.14 (H<sup>2</sup>, m); 2.88 – 2.80 (H<sup>5</sup>, m); 1.88 (H<sup>11</sup>, tAB, J = 12; 4.5 Hz); 1.32 (H<sup>11</sup>, br. BA, J = 12,  $\Delta \nu_{1/2}$  = 3 Hz).

 $C_{20}H_{15}N$  (269.3) Ber. C 89.18 H 5.61 N 5.20 Gef. C 88.96 H 5.29 N 5.05

*1-Chlor-7,8:9,10-dibenzotricyclo[4.2.2.1<sup>2,5</sup>]undeca-3,7,9-trien* (11c): 500 mg (2.35 mmol) 9-Chloranthracen (1c) werden unter Durchleiten von Stickstoff in 130 ml 9 bei 0 °C durch ein UVW-55-Filter mit einem Q-81-Brenner bis zum Verschwinden der UV-Absorption von 1c (4 – 5 h) belichtet. Anschließend fügt man noch 4 mal je 500 mg 1c (insgesamt 11.8 mmol) zu und belichtet entsprechend. Unverbrauchtes 9 wird i. Vak. in eine auf 77 K gekühlte Vorlage kondensiert. Der Rückstand wird nach Abdestillation flüchtigen Materials bei 40 °C/5 · 10<sup>-4</sup> Torr mit 10 ml CCl<sub>4</sub> aufgekocht. Man filtriert 930 mg (37%) ungelöstes 5 c ab und trennt das rückgebildete 1c (100 mg, 4%), 5 c (55 mg, insgesamt 39%) sowie weitere Verunreinigungen durch präp. DC (300 g SiO<sub>2</sub>, Cyclohexan) von 11 c. Ausb. 1.295 g (40%). Schmp. 104 – 106 °C (aus Ethanol).

UV (CH<sub>3</sub>CN):  $\lambda_{max}$  (ε) = 264 (800), 272 (1200), 279.5 nm (1650). - <sup>1</sup>H-NMR (250 MHz, CDCl<sub>3</sub>):  $\delta$  = 7.81 - 7.76 (1 Aromaten-H, m); 7.70 - 7.65 (1 Aromaten-H, m); 7.25 - 7.02 (6 Aromaten-H, m); 5.71 (H<sup>3</sup>, ddAB, J = 5.5; 3; 0.8 Hz); 5.65 (H<sup>4</sup>, ddBA, J = 5.5; 3; 0.8 Hz); 4.07 (H<sup>6</sup>, d, J = 8.8 Hz); 3.17 - 3.12 (H<sup>2</sup>, m); 2.86 - 2.77 (H<sup>5</sup>, m); 1.79 (H<sup>11</sup>, tAB, J = 11.5; 4.6 Hz); 1.32 (H<sup>11'</sup>, br. tBA, J = 11.5; 0.8 Hz).

 $C_{19}H_{15}Cl$  (278.8) Ber. C 81.86 H 5.42 Cl 12.72 Gef. C 81.67 H 5.37 Cl 12.74 *1,6-Dichlor-7,8: 9,10-dibenzotricyclo[4.2.2.1<sup>2,5</sup>]undeca-3,7,9-trien* (11d): 500 mg (2.0 mmol) 9,10-Dichloranthracen (1d) werden in 130 ml 9 bei 0 °C teilweise gelöst, mit Hilfe eines Magnetrührers aufgewirbelt und durch ein UVW-55-Filter mit einem Q-81-Brenner ohne Schutzgas belichtet, bis alles 1d in Lösung gegangen ist. Anschießend fügt man noch 2 mal je 500 mg 1d (insgesamt 6 mmol) zu und belichtet entsprechend. Unverbrauchtes 9 wird i. Vak. in eine auf 77 K gekühlte Vorlage kondensiert. Flüchtige Anteile destilliert man bei 40 °C/5 · 10<sup>-4</sup> Torr ab. Durch Aufkochen mit CH<sub>2</sub>Cl<sub>2</sub> und Filtration werden 900 mg (60%) des bei der Aufarbeitung aus labilen Photoprodukten zurückgebildeten 1d gewonnen. Die Mutterlauge enthält noch 300 mg (insgesamt 80%) 1d, die ebenso wie wenig einheitliche Nebenprodukte durch präp. DC (300 g SiO<sub>2</sub>/

Cyclohexan) von 11d getrennt werden. Ausb. 260 mg (14%), Schmp. 99-100°C (aus Methanol).

Chemische Berichte Jahrgang 113

UV (CH<sub>3</sub>CN):  $\lambda_{max}$  (ε) = 262 (560), 270.5 (790), 278.5 nm (1100). - <sup>1</sup>H-NMR (90 MHz, CDCl<sub>3</sub>):  $\delta$  = 7.95 - 7.65 (4 Aromaten-H, m); 7.4 - 7.1 (4 Aromaten-H, m); 5.75 - 5.65 (H<sup>3,4</sup>, m); 3.2 - 3.05 (H<sup>2,5</sup>, m); 1.77 (H<sup>11</sup>, tAB, J = 12; 4.5 Hz); 1.30 (H<sup>11'</sup>, mBA, J = 12 Hz).

C19H14Cl2 (313.2) Ber. C 72.86 H 4.51 Cl 22.63 Gef. C 72.60 H 4.23 Cl 22.55

7-Chlor-3 a, 11 c-dihydro-1H-pentaleno[1,2,3-de]anthracen (13): Durch wiederholte präp. DC der Nebenproduktfraktionen bei der Synthese von 11d (300 g SiO<sub>2</sub>, Cyclohexan), anschließende präp. hplc (Methanol) und Sublimation bei 80 °C ( $5 \cdot 10^{-4}$  Torr) werden 15 mg (0.8%) des polymerisations- und (oder) autoxidationsempfindlichen 13 (Schmp. 113 – 118 °C nach Sublimation bei 80 °C/ $5 \cdot 10^{-4}$  Torr) erhalten.

UV (CH<sub>3</sub>CN):  $\lambda_{max}$  (ε) = 253 (sh, 90000), 260 (123000), 335 (sh, 1700), 353 (sh, 3750), 368 (7000), 386.5 (9300), 408.5 nm (7250). – Fluoreszenz (CH<sub>3</sub>CN):  $\lambda_{max}^{korr.}$  = 420, 445, 473, 500 sh, ca. 540 nm sh. – <sup>1</sup>H-NMR (CDCl<sub>3</sub>, 250 MHz):  $\delta$  = 8.61 – 8.54 (1 Aromaten-H, m); 8.13 – 8.02 (2 Aromaten-H, m); 7.68 – 7.53 (3 Aromaten-H, m); 7.34 – 7.30 (1 Aromaten-H, m); 5.98 (H<sup>3</sup>, qAB, J = 6; 2.5 Hz); 5.71 (H<sup>2</sup>, qBA, J = 6; 2.5 Hz); 5.04 – 4.94 (H<sup>3a</sup>, mAB, J = 7 Hz u. a.); 4.85 (H<sup>11c</sup>, ddBA, J = 7; 10; 3.5 Hz); 3.16 (H<sup>1exo</sup>, tdAB, J = 17; 10; 2.5 Hz); 2.72 (H<sup>1endo</sup>, ttBA, J = 17; 3.5; 2.5 Hz).

C19H13Cl (276.8) Ber. C 82.46 H 4.73 Gef. C 82.75 H 4.49

7,8: 9,10-Dibenzotricyclo[4.2.2. $1^{2.5}$ Jundeca-7,9-dien-1-carbonitril (14b): 600 mg (2.2 mmol) 11 b werden in 20 ml Essigester nach Zusatz von 50 mg Pd/C (10%) katalytisch hydriert. Man filtriert und kristallisiert aus Ethanol bei 0 °C 480 mg (80%), Schmp. 127 – 129 °C (die Mutterlauge enthält noch 120 mg 14 b).

IR (KBr): 2235 cm<sup>-1</sup> (C = N). – UV (CH<sub>3</sub>CN):  $\lambda_{max}$  ( $\varepsilon$ ) = 256 (sh, 520), 260 (570), 267 (760), 274.5 nm (880). – <sup>1</sup>H-NMR (90 MHz, CDCl<sub>3</sub>):  $\delta$  = 7.7 – 7.45 (2 Aromaten-H, m); 7.35 – 7.05 (6 Aromaten-H, m); 4.10 (H<sup>6</sup>, d, *J* = 9.3 Hz); 3.0 – 2.8 (1 H, m); 2.7 – 2.4 (1 H, m); 1.65 – 1.0 (6 H, m).

C<sub>20</sub>H<sub>17</sub>N (271.3) Ber. C 88.52 H 6.32 N 5.16 Gef. C 88.54 H 6.22 N 4.93

*1-Chlor-7,8:9,10-dibenzotricyclo[4.2.2.1<sup>2,5</sup>]undeca-7,9-dien* (14c): 500 mg (1.8 mmol) 11c werden in 20 ml Essigester nach Zusatz von 50 mg Pd/C (10%) katalytisch hydriert. Man filtriert und kristallisiert aus Ethanol. Ausb. 320 mg (64%); Schmp. 140-142 °C. Die Mutterlauge enthält noch 180 mg 14c.

UV (CH<sub>3</sub>CN):  $\lambda_{max}$  ( $\epsilon$ ) = 253 (sh, 460), 261.5 (600), 267.5 (790), 275 nm (960). - <sup>1</sup>H-NMR (90 MHz, CDCl<sub>3</sub>):  $\delta$  = 7.95 - 7.7 (2 Aromaten-H, m); 7.4 - 7.05 (6 Aromaten-H, m), 4.08 (H<sup>6</sup>, d, J = 9.2 Hz); 3.0 - 2.8 (1H, m); 2.65 - 2.35 (1H, m); 1.6 - 0.95 (6H, m).

C19H17Cl (280.8) Ber. C 81.27 H 6.10 Cl 12.63 Gef. C 81.24 H 5.99 Cl 12.82

8,9:10,11-Dibenzotricyclo[ $5.2.2.0^{2.6}$ Jundeca-3,8,10-trien-1-carbonitril (12b): 600 mg (2.2 mmol) 11b und 10 ml Benzol werden unter Vakuum in einem Pyrexrohr abgeschmolzen und 10 h auf 130 °C erhitzt. Laut <sup>1</sup>H-NMR-Analyse entstehen 350 mg (78%) 1b und 100 mg (17%) 12b. Das Gemisch wird in 50 ml Benzol unter Duchleiten von Stickstoff bei 30 °C durch ein UVW-55-Filter mit einem Q-81-Brenner bis zum Verschwinden der UV-Absorption von 1b (Bildung von 5b; ca. 5 h) belichtet. Man destilliert das Lösungsmittel ab, kocht den Rückstand mit 10 ml Methanol auf, filtriert 340 mg 5b, reinigt 12b mittels präp. DC (300 g SiO<sub>2</sub>, Cyclohexan/Benzol (1:1), drei Entwicklungen) und kristallisiert aus Methanol; Schmp. 130–131 °C (beginnende Zers.).

IR (KBr): 2245 cm<sup>-1</sup> (C = N). – UV (CH<sub>3</sub>CN):  $\lambda_{max}$  ( $\epsilon$ ) = 250 (sh, 430), 257.5 (560), 263.5 (790), 270.5 nm (930). – <sup>1</sup>H-NMR (250 MHz, CDCl<sub>3</sub>):  $\delta$  = 7.68 – 7.62 (1 Aromaten-H, m); 7.55 – 7.48 (1 Aromaten-H, m); 7.35 – 7.19 (6 Aromaten-H, m); 5.54 (H<sup>3</sup>, br. qAB, J = 6; 2 Hz);

5.45 (H<sup>4</sup>, qBA, J = 6; 2 Hz); 4.20 (H<sup>7</sup>, d, J = 3.2 Hz); 3.50 (H<sup>2</sup>, mAB,  $J_{2,6} = 9.5$  Hz); 2.88 (H<sup>6</sup>, ddt, J = 9.5; 4; 3.2 Hz); 2.48 (H<sup>5</sup>, mdAB, J = 17.5; 9.5 [*cis*]Hz); 1.92 (H<sup>5'</sup>, mBA, J = 17.5 Hz).  $C_{20}H_{15}N$  (269.3) Ber. C 89.18 H 5.61 N 5.20 Gef. C 88.89 H 5.34 N 5.15

*1-Chlor-8,9:10,11-dibenzotricyclo[5.2.2.0<sup>2,6</sup> Jundeca-3,8,10-trien* (12c): 300 mg (1.1 mmol) **11c** und 5 ml Benzol werden unter Vakuum in einem Pyrexrohr abgeschmolzen und 22 h auf 172 °C erhitzt. Laut <sup>1</sup>H-NMR-Analyse entstehen **12c** und **1c** im Verhältnis 10: 5.4. Man belichtet die Mischung in 50 ml Benzol unter Durchleiten von N<sub>2</sub> bei 30 °C durch ein UVW-55-Filter mit einem Q-81-Brenner bis zum Verschwinden der UV-Absorption von **1c** (Bildung von **5c**; ca. 3 h) und trennt 45 mg (19%) **5c** sowie weitere noch nicht aufgeklärte Verunreinigungen mittels präp. DC (300 g SiO<sub>2</sub>, Cyclohexan) von **12c** ab. Ausb. 110 mg (36%), Schmp. 120–122 °C (aus CH<sub>3</sub>OH).

UV (CH<sub>3</sub>CN):  $\lambda_{max}$  ( $\varepsilon$ ) = 251 (sh, 490), 258 (600), 264 (820), 271 nm (980). - <sup>1</sup>H-NMR (250 MHz, CDCl<sub>3</sub>):  $\delta$  = 7.75 - 7.69 (1 Aromaten-H, m); 7.61 - 7.55 (1 Aromaten-H, m); 7.32 - 7.11 (6 Aromaten-H, m); 5.56 (H<sup>3</sup>, br. qAB, J = 6; 2 Hz); 5.42 (H<sup>4</sup>, qBA, J = 6; 2 Hz); 4.14 (H<sup>7</sup>, d, J = 3.2 Hz); 3.43 (H<sup>2</sup>, mAB,  $J_{2,6}$  = 9.5 Hz); 2.90 (H<sup>6</sup>, ddt, J = 9.5; 4; 3.2 Hz); 2.49 (H<sup>5</sup>, mdAB, J = 17; 9.5 [*cis*] Hz); 1.95 (H<sup>5'</sup>, mBA, J = 17 Hz).

C19H15Cl (278.8) Ber. C 81.86 H 5.42 Cl 12.72 Gef. C 81.74 H 5.20 Cl 12.87

*1,7-Dichlor-8,9:10,11-dibenzotricyclo[5.2.2.0<sup>2,6</sup>]undeca-3,8,10-trien* (12d): 220 mg (0.70 mmol) 11d und 7 ml Benzol werden unter Vakuum in einem Pyrexrohr abgeschmolzen und 35 h auf 152 °C erhitzt. Aus dem 60 mg (35%) 1d enthaltenden Reaktionsgemisch wird 12d mittels präp. DC (300 g SiO<sub>2</sub>, Cyclohexan) und anschließend präp. hplc (95% Methanol/Wasser) isoliert: 42 mg (19%), Schmp. 162 – 164 °C (aus CH<sub>3</sub>OH und nach Sublimation bei 100 °C/5 · 10<sup>-4</sup> Torr).

UV (CH<sub>3</sub>CN):  $\lambda_{\text{max}}$  (c) = 255 (sh, 370), 263 (540), 270 nm (620). – Fluoreszenz (CH<sub>3</sub>CN):  $\lambda_{\text{max}}^{\text{korr.}}$  = 286 nm. – <sup>1</sup>H-NMR (250 MHz, CDCl<sub>3</sub>):  $\delta$  = 7.76–7.67 (2 Aromaten-H, m); 7.64–7.60 (1 Aromaten-H, m); 7.57–7.53 (1 Aromaten-H, m); 7.32–7.18 (4 Aromaten-H, m); 5.54 (H<sup>3(4)</sup>, qAB, J = 6; 2 Hz); 5.40 (H<sup>4(3)</sup>, qBA, J = 6; 2 Hz); 3.51 (H<sup>2</sup>, mAB, J<sub>2,6</sub> = 9.5 Hz); 3.14 (H<sup>6</sup>, dt, J = 9.5; 4 Hz); 2.48 (H<sup>5</sup>, mdAB, J = 18; 9.5 [*cis*] Hz); 2.16 (H<sup>5'</sup>, mBA, J = 18 Hz). C<sub>19</sub>H<sub>14</sub>Cl<sub>2</sub> (313.2) Ber. C 72.86 H 4.51 Cl 22.63 Gef. C 72.81 H 4.26 Cl 22.43

8,9: 10,11-Dibenzotricyclo[ $5.2.2.0^{2,6}$ ]undeca-8,10-dien (16)<sup>2b,8</sup>: 360 mg (2.0 mmol) Anthracen (1a) und 1.5 g (22 mmol) Cyclopenten (15) werden unter Vakuum in einem Pyrexrohr abgeschmolzen und 30 h auf 172°C erhitzt. Durch Sublimation (100°C/ $5 \cdot 10^{-4}$  Torr) erhält man 490 mg (98%) 16, Schmp. 131 – 132°C<sup>2b,8</sup>).

4,5: 10,11: 13,14: 15,16-Tetrabenzopentacyclo[6.4. $2^{3,6}$ . $2^{9,12}$ . $1^{2,7}$ .0]heptadeca-4,10,13,15tetraen (17a): 490 mg (2.0 mmol) 11a und 800 mg (4.5 mmol) 1a werden zerrieben, in einem Pyrexrohr unter Vakuum abgeschmolzen und 20 h auf 172 °C erhitzt. Das Gemisch wird in 110 ml Benzol unter Durchleiten von Stickstoff bei 30 °C durch ein UVW-55-Filter mit einem Q-81-Brenner bis zum Verschwinden der UV-Absorptionen von 1a belichtet. Dimeres Anthracen (5a) wird abfiltriert und der Filtrationsrückstand mittels präp. DC (300 g SiO<sub>2</sub>, Cyclohexan, 3 Entwicklungen) aufgetrennt. Man eluiert 690 mg (81%) 17a, die sublimiert (180 °C/5 · 10<sup>-4</sup> Torr) und aus Methanol kristallisiert werden; Schmp. 265 – 268 °C (Zers.).

UV (CH<sub>3</sub>CN):  $\lambda_{max}$  ( $\epsilon$ ) = 260 (sh, 1610), 266.5 (2130), 272.5 (2610), 276 nm (sh, 2040). - <sup>1</sup>H-NMR (250 MHz, CDCl<sub>3</sub>):  $\delta$  = 7.18–6.86 (16 Aromaten-H, m); 4.12 (H<sup>9,12</sup>, br. s,  $\Delta v_{1/2}$  = 3.5 Hz); 4.07 (H<sup>3,6</sup>, d, J = 9 Hz); 2.22 (H<sup>2,7</sup>, dd, J = 9; 4.8,  $\Delta v_{1/2}$  = 2.5 Hz); 2.01–1.97 (H<sup>1,8</sup>, m); 0.37 (H<sup>17</sup>, br. d, J = 13.5,  $\Delta v_{1/2}$  = 4 Hz); -0.64 (H<sup>17'</sup>, dt, J = 13.5; 4.8 Hz). - <sup>13</sup>C-NMR (CDCl<sub>3</sub>):  $\delta$  = 145.6, 144.9, 143.7, 142.8, 127.5, 126.0, 125.9, 125.4, 125.3, 125.1, 124.5, 123.3,

51.9 (C-3; -6, J = 135 Hz), 50.2 (C-9; -12, J = 139 Hz), 49.2 (C-1; -8, J = 140 Hz), 43.3 (C-2; -7, J = 138 Hz), 31.0 (C-17, J = 132 Hz).

C<sub>33</sub>H<sub>26</sub> (422.5) Ber. C 93.80 H 6.20 Gef. C 93.51 H 6.23 Molmasse 429 (dampfdruckosmometr. in CH<sub>2</sub>Cl<sub>2</sub>)

3-Chlor-4,5: 10,11: 13,14: 15,16-tetrabenzopentacyclo[ $6.4.2^{3,6}.2^{9,12}.1^{2,7}$ .0]heptadeca-4,10, 13,15-tetraen (17 c): 280 mg (1.0 mmol) 11 c und 560 mg (3.1 mmol) 1a werden zerrieben, in einem Pyrexrohr unter Vakuum abgeschmolzen und 22 h auf 172 °C erhitzt. Das Gemisch wird in 130 ml Benzol unter Durchleiten von Stickstoff bei 30 °C durch ein UVW-55-Filter mit einem Q-81-Brenner bis zur vollständigen Dimerisierung von überschüssigem 1a belichtet. Man filtriert 5a ab und isoliert nach präp. DC (300 g SiO<sub>2</sub>, Cyclohexan, 3 Entwicklungen) 344 mg (75%) 17c, Schmp. 280 – 285 °C (nach Sublimation bei 200 °C/5 · 10<sup>-4</sup>. Torr und aus CH<sub>3</sub>OH).

UV (CH<sub>3</sub>CN):  $\lambda_{max}$  (ε) = 266.5 (1740), 272.5 (1980), 275 nm (sh, 1750). - <sup>1</sup>H-NMR (250 MHz, CDCl<sub>3</sub>):  $\delta$  = 7.71 - 7.65 (2 Aromaten-H, m); 7.17 - 6.95 (14 Aromaten-H, m); 4.14 (H<sup>12</sup>, d, J = 2.5 Hz); 4.11 (H<sup>6</sup>, d, J = 9 Hz); 4.08 (H<sup>9</sup>, d, J = 2 Hz); 2.56 (H<sup>2</sup>, br.d, J = 5,  $\Delta v_{1/2}$  = 3.5 Hz); 2.21 (H<sup>7</sup>, br.dd, J = 9; 5 Hz); 2.07 (H<sup>1</sup>, mAB, J = 8.5 Hz); 1.97 (H<sup>8</sup>, mBA, J = 8.5 Hz); 0.45 (H<sup>17</sup>, br.d, J = 14,  $\Delta v_{1/2}$  = 4 Hz); -0.59 (H<sup>17'</sup>, dt, J = 14; 5 Hz).

C33H25Cl (457.0) Ber. C 86.70 H 5.51 Cl 7.76 Gef. C 86.68 H 5.37 Cl 8.04

9-Chlor-4,5: 10,11: 13,14: 15,16-tetrabenzopentacyclo[ $6.4.2^{3,6}.2^{9,12}.1^{2,7}.0$ ]heptadeca-4,10, 13,15-tetraen (18): 300 mg (1.2 mmol) 11 a und 600 mg (2.8 mmol) 9-Chloranthracen (1c) werden in einem Pyrexrohr unter Vakuum abgeschmolzen und 22 h auf 172 °C erhitzt. Man kristallisiert aus 80 ml Methanol um und erhält 300 mg (54%) 18, Schmp. 223 – 224 °C. Aus der Mutterlauge wird überschüssiges 1c bei 120 °C ( $5 \cdot 10^{-4}$  Torr) absublimiert. Aus dem Rückstand lassen sich mit Methanol noch 140 mg (insgesamt 79%) 18 auskristallisieren.

UV (CH<sub>3</sub>CN):  $\lambda_{\text{max}}$  ( $\varepsilon$ ) = 259 (sh, 1200), 265.5 (1530), 271.5 (1970), 277 nm (1710). - <sup>1</sup>H-NMR (250 MHz, CDCl<sub>3</sub>):  $\delta$  = 7.60 - 7.50 (2 Aromaten-H, m); 7.18 - 7.01 (12 Aromaten-H, m); 6.91 - 6.86 (2 Aromaten-H, m); 4.10 (H<sup>12</sup>, d, *J* = 3.2 Hz); 4.10 (H<sup>6</sup>, d, *J* = 9 Hz); 4.07 (H<sup>3</sup>, d, *J* = 9 Hz); 2.58 (H<sup>7</sup>, br.dd, *J* = 9; 4.8 Hz); 2.29 (H<sup>2</sup>, br.dd, *J* = 9; 4.8 Hz); 2.23 (H<sup>8</sup>, mAB, *J* = 8.5 Hz); 2.11 (H<sup>1</sup>, mBA, *J* = 8.5 Hz); 0.40 (H<sup>17</sup>, br.d, *J* = 14,  $\Delta v_{1/2}$  = 4 Hz); -0.62 (H<sup>17'</sup>, dt, *J* = 14; 4.8 Hz).

C33H25Cl (457.0) Ber. C 86.70 H 5.51 Cl 7.76 Gef. C 86.59 H 5.46 Cl 7.93

4,5: 11,12: 14,15: 16,17-Tetrabenzopentacyclo[7.4.2<sup>3,6</sup>.2<sup>10,13</sup>.0.0<sup>2,7</sup>]heptadeca-4,11,14,16tetraen (19): 490 mg (2.0 mmol) 12 a werden wie bei der Umsetzung von 11 a mit 800 mg (4.5 mmol) 1a auf 172 °C erhitzt (64 h) und aufgearbeitet. Durch präp. DC werden 750 mg (88%) 19 erhalten, die man sublimiert (180 °C/5  $\cdot$  10<sup>-4</sup> Torr) und aus Methanol kristallisiert; Schmp. 245 – 247 °C.

UV (CH<sub>3</sub>CN):  $\lambda_{max}$  ( $\epsilon$ ) = 251 (sh, 1110), 259 (sh, 1560), 264.5 (2450), 271.5 nm (3040). - <sup>1</sup>H-NMR (250 MHz, CDCl<sub>3</sub>):  $\delta$  = 7.30 - 6.99 (16 Aromaten-H, m); 4.24 (H<sup>3,13</sup>, d, J = 2.5 Hz); 3.84 (H<sup>6,10</sup>, d, J = 3.2 Hz); 2.21 - 2.11 (H<sup>1,2</sup>, m); 1.94 - 1.79 (H<sup>7,9</sup>, m); 1.48 - 1.36 (2H<sup>8</sup>, m).

C33H26 (422.5) Ber. C 93.80 H 6.20 Gef. C 93.57 H 6.00

5,6: 13,14: 18,19: 20,21-Tetrabenzoheptacyclo[ $8.6.2^{4,7}.2^{12,15}.1^{2,9}.1^{11,16}.0.0^{3,8}$ ]docosa-5,13, 18,20-tetraen (21): 1.0 g eines Gemisches aus 11 a (445 mg, 1.82 mmol), 12 a (390 mg, 1.60 mmol) und 1a (165 mg, 0.93 mmol)<sup>2b,8</sup>) werden unter Vakuum in einem Pyrexrohr abgeschmolzen und 50 h auf 172 °C erhitzt. Durch präp. DC (300 g SiO<sub>2</sub>, Cyclohexan, 3 Entwicklungen) trennt man 53 mg (0.30 mmol) 1a, 270 mg (1.11 mmol) 12 a und höhermolekulares Material von 560 mg eines Gemisches aus 21, 17 a und 19 ab. Durch Kristallisation des Gemisches aus Dichlormethan/Ethanol (1:10) werden 42 mg (0.09 mmol) 21 abgetrennt und durch Sublimation ( $220 \degree C/5 \cdot 10^{-4}$  Torr) analysenrein erhalten; Schmp. >  $340 \degree C$  (aus Dichlormethan).

UV (CH<sub>3</sub>CN, 40 °C):  $\lambda_{max}$  ( $\epsilon$ ) = 261 (sh, 1550), 268 (sh, 2200), 271 (sh, 2500), 274 (2650), 277.5 nm (2350). - <sup>1</sup>H-NMR (250 MHz, CDCl<sub>3</sub>):  $\delta$  = 7.20 - 6.94 (16 Aromaten-H, m); 4.07 (H<sup>4,7</sup>, br.s,  $\Delta v_{1/2}$  = 3.5 Hz); 4.01 (H<sup>12,15</sup>, d, J = 8.8 Hz); 2.33 (H<sup>11,16</sup>, br.dd, J = 9; 4.5 Hz); 1.99 (H<sup>1,10</sup>, br.s,  $\Delta v_{1/2}$  = 4 Hz); 1.95 - 1.91 (H<sup>2,9</sup>, m); 1.69 - 1.65 (H<sup>3,8</sup>, m); 1.14 (1 H, mAB, J = 13.5 Hz); 0.88 (1 H, mBA, J = 13.5 Hz); 0.11 (1 H, mAB, J = 11 Hz); -0.41 (1 H, mBA, J = 11 Hz).

Aus der Mutterlauge werden 17a und 19 bei 180°C ( $5 \cdot 10^{-4}$  Torr) absublimiert. Die Kristallisation aus Ethanol liefert 170 mg 17a. Die zweite Mutterlauge enthält 195 mg 17a (insgesamt 0.86 mmol) und 135 mg (0.32 mmol) 19, die mittels präp. hplc (90% Methanol/Wasser) getrennt werden. Nebenprodukte geringer Ausb. (< 1%) deren UV-Spektren (CH<sub>2</sub>Cl<sub>2</sub>,  $\lambda_{max} = 348, 367, 388$  nm) auf 9-Alkylanthracen-Strukturen hindeuten, wurden wegen der geringen Substanzmengen noch nicht charakterisiert.

### Literatur und Fußnoten

- <sup>1)</sup> Übersicht: G. Kaupp, Liebigs Ann. Chem. 1977, 254; Lit.-Zit.
- <sup>2)</sup> <sup>2a)</sup> G. Kaupp, Chimia 25, 230 (1971). <sup>2b)</sup> Liebigs Ann. Chem. 1973, 844. <sup>2c)</sup> The Woodward-Hoffmann Rules and Thereafter, Univ. Freiburg 1974/75.
- <sup>3)</sup> N. D. Epiotis und R. L. Yates, J. Org. Chem. 39, 3150 (1974); Lit.-Zit.
- <sup>4)</sup> Zum Begriff Diradikal vgl. G. Kaupp, E. Teufel und H. Hopf, Angew. Chem. **91**, 232 (1979); Angew. Chem., Int. Ed. Engl. **18**, 215 (1979).
- <sup>5)</sup> G. Kaupp und H.-W. Grüter, Angew. Chem. **91**, 943 (1979); Angew. Chem., Int. Ed. Engl. **18**, 881 (1979).
- <sup>6)</sup> R. Calas, R. Lalande und P. Mauret, Bull. Soc. Chim. Fr. 1960, 144.
- <sup>7)</sup> Weitere Auskünfte sind wahrscheinlich erst im Anschluß an zahlreiche direkt spektroskopische 1,4-Diradikal-Nachweise zu gewinnen (vgl. Lit.<sup>4</sup>), die aber in der Regel erst unterhalb 77K gelingen dürften. Wir planen derartige Versuche.
- <sup>8)</sup> G. Kaupp, Angew. Chem. 84, 718 (1972); Angew. Chem., Int. Ed. Engl. 11, 718 (1972).
- <sup>9)</sup> G. Kaupp und R. Dyllick-Brenzinger, Angew. Chem. 86, 523 (1974); Angew. Chem., Int. Ed. Engl. 13, 478 (1974).
- <sup>10)</sup> G. Kaupp und E. Teufel, J. Chem. Res. (M) 1978, 1301; (S) 1978, 100.
- <sup>11)</sup> N. C. Yang, K. Srinivasachar, B. Kim und J. Libman, J. Am. Chem. Soc. 97, 5006 (1975); zur Produktverteilung bei der Photoaddition von 1a an 1,3-Cyclohexadien siehe oben und Lit.<sup>1,2c,5)</sup>.
- <sup>12)</sup> Bei den Additionen von 9 an 1\* sind auch die Produkte der substituierenden Addition 9-X,10-(1-cyclopentadienyl)-9,10-dihydroanthracen zu erwarten [entsprechende Addukte bei G. Kaupp und M. Stark, Angew. Chem. 90, 803 (1978); Angew. Chem., Int. Ed. Engl. 17, 758 (1978)], jedoch müßten sich diese Produkte wegen ihrer vermutlich hohen Additionsfreudigkeit weiter umwandeln.
- <sup>13)</sup> Die im Vergleich zu 12a schnelleren thermischen Umwandlungen von 11a beruhen fast ausschließlich auf Unterschieden in den Frequenzfaktoren<sup>9)</sup>.

[255/79]